
Memory Module-level Testing and Error Behaviors

for Phase Change Memory

Zhe Zhang∗, Weijun Xiao†,‡, Nohhyun Park∗, and David J. Lilja∗

∗ Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455
† Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, 23284

‡ Corresponding author: wxiao@vcu.edu

Email: zhan0915@umn.edu, wxiao@vcu.edu,{parkx408, lilja}@umn.edu

Abstract—Phase change memory (PCM) is a promising tech-
nology to solve energy and performance bottlenecks for memory
and storage systems. To help understand the reliability char-
acteristics of PCM devices, we present a simple fault model to
categorize four types of PCM errors. Based on our proposed fault
model, we conduct extensive experiments on real PCM devices
at the memory module level. Numerical results uncover many
interesting trends in terms of the lifetime of PCM devices and
error behaviors. Specifically, PCM lifetime for the memory chips
we tested is greater than 14 million cycles, which is much longer
than for flash memory devices. In addition, the distributions for
four types of errors are quite different. These results can be used
for estimating PCM lifetime and for measuring the fabrication
quality of individual PCM memory chips.

I. INTRODUCTION

Phase Change Memory (PCM) is one of the emerging

memory technologies that has received a lot of attention

from both the academic and industrial communities in recent

years. Currently, Samsung Electronics and Micron Technology

have made commerical PCM chips available in the market.

Architectural efforts show great potential to use PCM as a

DRAM alternative for future memory systems because PCM

is non-volatile memory and the latency is close to DRAM.

Compared to Flash Memory, PCM is byte-addressable with a

much longer lifetime and much faster read and write cycles.

It is also not necessary to explicitly erase before writing PCM

cells. However, most of the previously published work on

PCM devices are based on simulations [1], [2], [3]. Little is

known in the open literature about how PCM errors behave in

real devices and the distributions of the errors.

In this paper, we work on real PCM chips for reliability

testing. We develop a simple fault model to characterize

PCM errors into four categories: Write Error (Type I and II),

Program Interference Error, and Read Error. Based on this fault

model, we propose an effective March Test algorithm to detect

PCM errors [4]. By measuring and analyzing different types of

PCM errors, we characterize error behaviors in terms of the

lifetime (i.e., time-sensitive behavior) and error distribution.

To the best of our knowledge, this is the first work for PCM

testing and error behaviors on the existing PCM devices.

Our numerical results reveal many interesting observations for

PCM reliability, which could be very helpful for understanding

PCM physical properties in terms of performance and relia-

bility and developing error correction coding for PCM. The

main contributions of the paper are summarized as follows.

• We characterize the lifetime and error behaviors and find

that the life time of PCM is more than 14 million cycles

for the chips we tested. In addition, the Write Error (Type

I) increases linearly as the program cycle increases. The

other three types of errors occur much less frequently

than the Write Error (Type I).

• We analyze the distributions of PCM errors and find

that the Write Error (Type I) eventually becomes a

permanent error and remains stuck at zero forever. It

appears as a transient error at first and then gradually

becomes permanent as the PCM is continuously cycled.

Write Errors (Type II) and Program Interference Errors

decrease exponentially in time. Read Errors are transient

and typically last for only several cycles.

• The Write Error (Type I) is due to over-cycling while the

other three types of errors are not significantly impacted

by over-cycling. Based on this observation, the Write

Error (Type I) could be used as a lifetime estimator for

PCM devices.

• The Write Errors (Type II) provide an indication for

estimating the fabrication quality of individual PCM

memory chips because PCM cells will have more Type

II errors when they contain impurities.

The rest of the paper is organized as follows. Section 2

describes the operation of PCM devices. In Section 3, we

develop a simple fault model for PCM devices. Our testing

platform and methodology are presented in Section 4 and our

experimental results are discussed in Section 5. We conclude

the paper in Section 6.

II. PHASE CHANGE MEMORY

Phase Change Memory is a type of non-volatile memory

that uses two structural states to represent two logical values.

There is a chalcogenide layer (i.e. GST) in a PCM cell. This

layer can be suitably changed between two phases (amorphous

and crystalline) either through current or plasma heating of the

chalcogenide material. Most PCM devices use current heating

method.

The crystalline state, which is low resistance for the cells,

is interpreted as a logic value ’1’ while the amorphous state

with high resistance in cells is interpreted as a logic value

’0’ [7]. The amorphous phase is accomplished by heating the

358978-1-4673-3052-7/12/$31.00 ©2012 IEEE

material rapidly beyond its melting point (Tm) and cooling

it down to the glass transition temperature (Tg) within a

very short time. The crystalline phase, on the other hand,

is obtained by heating the material to a point between the

melting temperature and the glass transition temperature with

a relatively large programming duration. The programming

pulse lasts for aproximately 10ns for the amorphous phase

and 50ns [8] for the crystalline phase. The typical melting

temperature of the material is about 600
◦C and the glass

transition is about 300◦C [9].

III. PCM FAULT MODEL

During the manufacturing process, spot defects and con-

taminants between the cell heater and the chalcogende material

might result in unreliable data [10]. In this section, we develop

a simple fault model that incorporates all of the faults that

occurred in our experiments and explain the possible reasons

for these faults. We characterize PCM errors into four types:

Write Error (Type I) (WE(I)), Write Error (Type II) (WE(II)),

Program Interference Error (PI), and Read Error (RE). Al-

though both WE(I) and WE(II) occur due to write operations

on PCM, they have different behaviors. We partitioned these

errors into two separate types and analyzed them individually.

The detailed descriptions of the four types of PCM errors are

as follows.

• Write Error (Type I): Writing ’1’ into a cell but the actual

data afterward in the cell is ’0’. The reason for this error

is that the GST material of the PCM cell might loosen

from its top electrode and hence incur an open circuit in

the cell [11].

• Write Error (Type II): Writing ’0’ into a cell but the

actual data afterward in the cell is ’1’. Two reasons

could cause this error. The first reason is that the GST

material could be overheated during programming and

consequently intermixed with ajacent cells [7]. If this

occurs, the cell will exhibit low resistance all the time

and never flip to zero again. The second reason is that

the contaminants in the cell could result in parallel paths

to conductive material in the cell. This current leakage

eventually reduces the overall resistance of the cell [12].

• Program Interference Error: Data in a cell is altered

because of programming operations in adjacent cells [6].

This failure is caused by thermal crosstalk. Because of

defects or bad isolation, when you are programming a

cell, the adjacent one might be influenced by thermal

leakage, which alters the adjacent cell.

• Read Error (RE): Data in a cell is changed because of

reading operations in the current location. This failure can

be due to several possible causes. First of all, when a cell

is read immediately after it has been programmed [13],

there will have a delay for the cell resistance to reach

equilibrium state. Because of this delay, the returned

value from the read operation is different from the actual

data when the cell becomes stable. In our current testing

platform, the time interval between a write operation and

a read operation is longer than the equilibrium transition

delay of the cell, therefore this error never happens for

this reason in our system. The second cause of this type

of error is that the presence of defects or over-cycling

could overheat the cell when running read operations

eventually causing the bit to flip [7]. The third cause is

that it is possible to mis-activate the current circuit for

writing instead of the one for reading [14]. In this case,

the generated thermal energy is much larger than from

read operation, which can alter a bit in the cell.

IV. TESTING PLATFORM AND METHODOLOGY

Our testing platform consists of three parts: a CPU core, a

PCM memory controller, and a PCM daughter board. We use

the Xilinx Spartan 6 FPGA to implement the MicroBlaze as

the CPU core. The core then connects to the PCM memory

controller through a peripheral bus interface (PLB).

A. CPU and PCM memory controller

Xilinx has its own soft core called MicroBlaze, which can

run at 100 MHz. We use it as the CPU in our system and attach

it to a peripheral through a Peripheral Local Bus (PLB). The

PLB is connected to all peripherals such as a UART, Serial

Ports as well as We designed a custom custom interfaces. We

designed a custom daughter board that is connected to the

FPGA board through a 40-pin FMC connector.

The PCM memory controller, which is attached to the

PLB, is running at 66.67 MHz. We developed a finite state

machine to perform single read and write operations on the

PCM chips. Both single read and write operations need 16

bus cycles. A PCM device driver has been implemented for

complicated read/write operations based on the datasheet from

the manufacturer. Our testing algorithm is run as a standalone

application on a Xilinx Embedded Develop Kit (EDK) and we

are able to issue multiple PCM commands to the PCM chips.

B. PCM daughter board

We have four PCM chips mounted on a small PCM daughter

board that share common address and data buses. There are

8M addresses within a PCM chip and every address has 16

bits, therefore, each PCM has 128 Mbits.

C. Testing Algorithm

Based on the error types we proposed in Section III, we

develop a March algorithm that can classify PCM faults.

Although there are several proposed diagnostic March tests

in the literature [15], [16], we just use basic March algorithm

for this preliminary testing and leave these advanced testing

approaches as our future work. In our tests, we choose 32

adjacent addresses as a block and each address consists of 16

bits, giving 512 bits per block.

March test algorithm used in this work is shown in Table I.

This March test consists of several March elements. Every

element applies a set of read/write operations to a given

memory address. Our March algorithm runs across consecutive

addresses along the direction of the symbol ց. For example,

W0, R0, R0 is a set of operations which are applied to an

359

TABLE I
PCM ERROR DETECTION MARCH ALGORITHM

b

addr March 0 March 1 March 2

0 W0,R0,R0 R0 R0
1 W0,R0,R0 R0 R0

.

.

. ց ց ց
31 W0,R0,R0 R0 R0

addr March 3 March 4 March 5

0 W1,R1,R1 R1 R1
1 W1,R1,R1 R1 R1

.

.

. ց ց ց
31 W1,R1,R1 R1 R1

address in memory. First, it writes 0s into the given address.

The second and third operations read data from the address

and the expected values are 0s. W1 and R1 in the algorithm

means writing and reading 1s in a certain address, respectively.

We explain how this March algorithm detects all of the four

types of errors as follows:

• WE(I): Write Error (Type I) is detected in March 3. Two

read operations obtain two values which are expected

to be 1s. However, if a WE(I) occurred at any bit, the

returned values from the read operations should be 0s.

We can do a Bit-OR operation between two values to

detect WE(I). The Bit-OR excludes the RE error.

• WE(II): Similar to WE(I), the Write Error (Type II) can

be detected in March 0. Two values from reading are

expected to be 0s. We do a Bit-AND operation between

them to detect WE(II). The Bit-AND excludes the RE

error.

• PI: All PI faults are detected by March 0 and March 3. If

a Program Interference error occurs, the data read from

March 2 should be different from both of the data read

from March 0. March 5 works in the same way. The

reason to add March 1 and March 4 is to distinguish RE

errors from PI errors. We claim that a PI error occurs

only if March 1 and March 2 read the same data from a

certain location. March 4 and March 5 works in the same

way as March 1 and March 2.

• RE: In March 0 and March 3, a RE occurs if two reads

from the same address are different from each other.

We need to point out some exceptions in our algorithm.

First, in RE detection, if the first read operation flips some bits

in the address, we will never know that a RE happened because

the succeeding read data should be the same. However, we

did some experiments to clarify our algorithm. We consis-

tently read data from an address. Read errors happened after

thousands of read cycles while most of the addresses never

had read errors. This experiment was implemented in different

blocks and with over 100 million programming cycles. In

addition, only a small portion of the read operations can flip

the bit in the cell and most of the REs only occurred once. In

other words, it did not alter the content in the cell although

it exhibited a wrong bit. This behavior suggests that the error

was probably a transient problem in the interface circuitry and

l

l

l

20 40 60 80 100

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Cycles(Million)

E
rr

o
r

R
a
te

14 20 40 60 80 100

l

l

l

l

l

l

l l l

l l l

Sum of Errors

Write Error(Type I)

Write Error(Type II)

Program Interference Error

Read Error

Fig. 1. Overall Error Comparison

TABLE II
MAXIMUM STANDARD DEVIATION

Error Type max σN

Sum 0.068467
WE(I) 0.038458
WE(II) 0.029767

PI 0.005616
RE 0.002051

not in the PCM device itself. We also note that read errors are

very rare compared to other errors in PCM devices, as shown

in Figure 1. We ignore this error in our experiments. Second,

an unexpected read error could mislead us to obtain a WE(I)

or a WE(II) in March 3 and March 0. It could also hide a

PI error in March 2 and March 5. Still, read error is really

uncommon in PCM, so we ignore these errors as well.

V. EXPERIMENTAL RESULTS

The lifetime characteristics of the PCM devices and their

different error behaviors are presented in this section. These

results are obtained from testing eight blocks from two differ-

ent PCM chips, which four blocks from each chip.

A. Overall PCM Error Comparison

All of the results for the error rates are shown in Figure 1.

The x-axis represents how many cycles have already been

programmed in a PCM block. The y-axis shows the error rate

which is the ratio between the number of bit errors and the total

number of bits in the block. The solid lines represent averages

of different errors and the vertical bars stand for error ranges

of plus-or-minus one standard deviation. We discuss several

observations here.

First, all the errors happened after 14 million programming

cycles. This means that the PCM cells start to wear out after

14 million programming cycles, which is consistent with the

results shown in the literature for PCM lifetime of 10
7 write

cycles [3], [2].

Second, WE(I) errors are linearly accumulated and the

frequency of this error is much larger than the other three

360

errors. As shown in Figure 1, WE(I) becomes dominant failure

after 50 million programming cycles. The gap between WE(I)

and the other three errors becomes larger when the block

continues to be extensively programmed. On the other hand,

WE(II), PI and RE also tend to accumulate as the number

of programming cycles increases. However, from 60 million

cycles, PI and RE level out while WE(II) continues to increase,

although the slope reduces somewhat. In fact, one can see from

the later section that WE(II) eventually becomes constant,

too. Since WE(II), PI and RE are not impacted by cycling,

we can use the WE(I) rate as a rough lifetime indicator.

Furthermore, it is possible to propose a new over-provisioning

algorithm for solid-state storage (SSS) based on this behavior.

Current storage media with a limited life cycle, such as flash

memory, typically include spare memory blocks to compensate

for blocks that will fail. The slope of WE(I) in Figure 1 can be

used to predict the number of damaged data blocks. Together

with the number of spare blocks, this prediction can be used to

estimate the number of cycles left on the device. Conversely,

the system designer can use this information to determine the

number of spare blocks to guarantee a specified lifetime.

Third, Table II shows the standard deviations of the error

rates for different types of errors. We choose the maximum

value within 100 million programming cycles for each error.

From Table II as well as Figure 1, the standard deviations are

not large for PI and RE. This indicates that these two types of

errors do not vary too much across different blocks or different

chips. We will explain later that these two errors are intrinsic

properties of PCM chips. On the other hand, WE(I) and WE(II)

errors seem very undeterministic in our test results. The reason

is because these two write errors are related to the quality

of the chips. In later section, we describe how WE(II) has

very different behaviors in different chips while it is mostly

independent of over-cycling compared to WE(I). Thus, WE(II)

can be used as a proxy for the quality of different chips.

B. Error Distribution

In this section, we will discuss the distributions of different

errors. The purpose is to discover the relationships between

different errors and the number of programming cycles. The

experiment runs in several steps: First, we flip all the cells

within the block between 0 and 1 and stop flipping after 100

million programming cycles. Second, we run the algorithm

shown in Table II 5000 times and print out error messages.

Third, we calculate error durations as follows. Once an error

occurs at some cell, we initialize a counter for this error

and increment it by one if this type of error happens again

during next programming cycle. If it does not occur, we stop

accumulating and print out the current counter as the error

duration. If an error last for 5000 cycles, we consider it as a

permanent error which occurs at the first iteration and lasts

until the end of 5000 cycles. If an error only lasts for 1 cycle,

we consider it a transient error which occurs once and quickly

disappears in the next cycle. Data between these two extremes

means that the error occurs and lasts for several cycles and

then disappears.

1) Write Error (Type I): Figure 2 shows the WE(I) distri-

bution in a certain block. Figure 2(a) is the distribution after

programming 100 million cycles on this block. Figures 2(b),

(c), and (d) are the distributions after programming 150

million, 200 million and 250 million cycles, respectively.

Referring to Figure 2, we note that more than half of the

errors only last for one cycle and that the distributions from

2 to 10 cycles do not change too much with the number of

programming cycles. The error durations from the duration

from 50 to 4999 cycles are not shown due to limited graphical

resolution. However, the distributions in this range are very

low and dispersed across the range. Finally, the distribution of

error duration at 5000 cycles and beyond is increasing as the

block is being continuously programmed.

As described in Section III, WE(I) occurs due to over-

cycling the cell which causes the GST material to separate

from the top electrode in the cell. Hence, the cell becomes

an open circuit and exhibits high resistance all the time. From

our results, we see that wearing out a cell is a gradual process.

Figure 2 shows that the probability of one cycle is decreasing

as the number of programming cycles increase. Cells appear to

be reliable when the chip is young. Even as WE(I) errors begin

to occur, the cell tends to recover quickly. However, as the cell

is continuously programmed, the connection between the GST

and the top electrode apparently becomes looser and the error

lasts longer. In Figure 2, the distributions in the range between

2 and 20 cycles are still high and continuous. Finally, the

cell reaches a threshold and the error becomes permanent.The

probabilities of the duration between 20 and 4999 cycles are

very low and the distribution is unexpectedly dispersed within

this range. This indicates that the error in the cell is highly

likely to become a permanent error if the WE(I) error has

already lasted for tens of cycles. This implies the connection

between the GST and the electrode is almost broken.

Previously, we suggested using WE(I) as the lifetime in-

dicator of PCM for a new over-provisioning algorithm. In

reality, however, it is difficult to obtain lifetime behavior of

WE(I) like Figure 1. It requires tracking WE(I) errors at

different programming cycles and then predicting the WE(I)

slope to estimate the remaining lifetime. Unlike WE(I) lifetime

behavior, however, the WE(I) distribution only needs to be

examined once to predict the lifetime status. If the distribution

is biased towards the permanent error side, we should mark

this block as no longer usable. In addition, WE(I) distributions

on different blocks are likely to follow the same transition

moving from the transient error side to the permanent error

side. Therefore, we can record WE(I) distributions from dif-

ferent blocks to develop a global wear-leveling algorithm that

balances the lifetime of different blocks. Furthermore, if PCMs

are implemented in solid-state storage (SSS), we can also

obtain distribution statistics from different blocks and chips

and develop a corresponding global wear-leveling algorithm.

2) Write Error(Type II): As shown in Figure 1, the number

of WE(II) errors does not dramatically increase with the

number of programming cycles. In order to obtain further

knowledge of WE(II) behavior, we double the programming

361

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
ili

ty

(a) 100M cycle

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
ili

ty

(b) 150M cycle

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
ili

ty

(c) 200M cycle

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
ili

ty

(d) 250M cycle

Fig. 2. WE(I) Distribution

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Two Write Errors with 200 Million Cycles

Cycles(Million)

Er
ro

r R
at

e

Write Error(Type I)

Write Error(Type II)

(a) Two Write Errors

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

Write Error(Type II) with 200 Million Cycles

Cycles(Million)

Er
ro

r R
at

e

(b) WE(II)
Fig. 3. Write Errors with 200 Million Cycles

cycles to 200 million. Figure 3(a) shows the behaviors of

WE(I) and WE(II) with this increased number of write cy-

cles. We also expand WE(II) on a larger scale as shown in

Figure 3(b). In Figure 3(a), WE(I) keeps linearly increasing

over the 200 million cycles, while WE(II) stays under 0.05.

As we mentioned previously, there are two potential causes

of WE(II) errors. The first is due to over-cycling. The chalco-

genide material in the cell could intermix with adjacent

cells [7] forcing the cell to logic ’1’. The second cause can be

attributed to impurities in the cell [6]. This is a manufacturing

issue not related to over-cycling. Therefore we will separately

discuss how these two causes contribute to the observed

WE(II) behavior.

From Figure 3(b), WE(II) first occurs at 15 million cycles

and slowly increases with the number of programming cy-

cles. This implies over-cycling has impact on WE(II) errors.

However, unlike WE(I) errors, WE(II) errors do not linearly

increase. After 15 million cycles in Figure 3(b), WE(II)

stays below 0.01 until 100 million cycles. At that point, it

jumps beyond 0.02 and oscillates between 0.01 and 0.04.

This demonstrates that over-cycling could break the physical

structure of the cells and force them to stick at ’1’ all the time.

However, compared to WE(I), the lifetime-related WE(II)

errors are very rare in PCM. Because most of the cells are

completely isolated from adjacent cells, over-cycling these

cells will lead to an open circuit which then get categorized

as WE(I) errors. Only a small portion of cells would intermix

with adjacent cells because of bad isolation when they are

extensively programmed. Therefore over-cycling is not the

dominant issue for WE(II).

Impurities, which are intrinsic in PCM devices, are a

byproduct of the manufacturing process. We found that differ-

ent PCM chips have different WE(II) behaviors. We selected

two chips and picked up four blocks from each chip. We

calculated the average of the WE(II) errors for these two chips.

From Figure 4, the WE(II) errors in chip1 increase much faster

than those in chip2. This suggests different quality levels of

the two chips. Since over-cycling does not influence WE(II)

very much, we can use WE(II) as a measure of the fabrication

quality of PCM chips.

3) PI and RE: Figures 5 and 6 show that the PI and RE

errors maintain the same frequency distribution as the number

of programming cycles increases. This result indicates that PI

and RE are transient errors that are able to heal themselves in

the next few cycles.

Recall from section III that PI errors are caused by thermal

cross-talk between adjacent cells. Since the PI distribution

is independent of the number of programming cycles, it is

apparently an intrinsic feature of our PCMs. We speculate

that it is the layout of the PCM chip that determines the PI

distribution since the layout determines the adjacency between

different cells.

Similarly, RE errors are also caused by an intrinsic feature

of PCMs. In Section III, we explained that RE errors are

caused by defects in the cell or mis-activating the write circuit

during a read operation. Both of causes are physical properties

of the PCM devices.

Because most PI and RE errors only occur once and then

disappear, we can ignore these errors when developing error

correcting codes for PCM memory systems. On the other hand,

we should put more efforts towards tolerating WE(I) errors

362

l

l

l

l

l
l

l

0 20 40 60 80 100

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Cycles(Million)

E
rr

o
r

R
a

te

l

l

l

l

l
l

l

l

l l

l

l

l
l

Chip 1

Chip 2

Fig. 4. Chip Comparison for WE(II)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(a) 100M cycle

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(b) 150M cycle

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(c) 200M cycle

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(d) 250M cycle

Fig. 5. PI Distribution

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(a) 100M cycle

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(b) 150M cycle

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(c) 200M cycle

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 10 20 30 40 50 5000

Duration

P
ro

b
a
b
il
it
y

(d) 250M cycle

Fig. 6. RE Distribution

since WE(I) is the dominant error when the PCM devices are

extensively programmed.

VI. CONCLUSION

In this paper, we have developed a simple fault model to

characterize PCM errors into four types. Based on our pro-

posed fault model and testing algorithm, we have conducted

extensive experiments on real PCM devices at the memory

module level. Our measured results have shown many interest-

ing observations in terms of the lifetime of PCM devices and

their error distributions. We found that the lifetime of PCM

is much longer than that of flash memory and Write Error

(Type I) is the dominant type of errors that linearly increases

with the number of program cycles. In addition, we have also

investigated error distributions for different error types. Our

results demonstrated that over-cycling has a significant impact

for Write Error (Type I) and negligible effects for the other

three error types. In the future, we will use these findings

to develop new wear-leveling and ECC algorithms for phase

change memory.

ACKNOWLEDGMENT

This material is based upon work supported by the US

National Science Foundation (NSF) under Grant ITR-0937060

to the Computing Research Association for the CIFellows

Project. This work is also sponsored in part by the Center

for Research in Intelligent Storage (CRIS), which is supported

by National Science Foundation grant no. IIP-0934396, IIP-

1127829, and member companies. Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the NSF. The authors also would like to thank Erich Frahm

for helping us to build a PCM daughter board.

REFERENCES

[1] Moinuddin K. Qureshi, Michele Franceschini, and Luis Lastras: ”Improv-
ing Read Performance of Phase Change Memories via Write Cancellation
and Write Pausing”, HPCA 2010.

[2] M.K. Qureshi et al.: Morphable Memory System: a Robust Architecture
for Exploiting Multi-level Phase ChangeMemories, in ISCA 2010.

[3] S. Raoux et al.: Phase-Change Random Access Memory: a scalable
technology, IBM J. Res. Dev., 2008

[4] Magdy S. Abadir and Hassan K. Reghbati.: ”Functional Testing of
Semiconductor Random Access Memories”, ACM Comput. Surv. 15, 3
(September 1983), 175-198.

[5] Yu Cai, Eric F. Haratsch, Onur Mutlu and Ken Mai: ”Error Patterns
in MLC NAND Flash Memory: Measurement, Characterization and
Analysis”, DATE12/EDAA, 2012.

[6] M.G.Mohammad: ”Fault model and test procedure for phase change
memory”, IET Computers and Digital Techniques, 2011, 5, (4), pp.263-
270.

[7] Pirovano, A., Redaelli, A., Pellizzer, F., et al.: ”Reliablibity study of
phase-change non-volatile memories”, IEEE Trans. Device Mater. Reliab.,
2004, 4, (3), pp. 422-427.

[8] Salamon, D., Cockbum, B.F.: ”An electrical simulation model for the
chalcogenide phase-change memory cell”. Int. Workshop on Memory
Technology, Design and Testing, July 2003, pp.86-91.

[9] Muller, G., Nagel, N., Pinnow, C.-U., Rohr, T.: ”Emerging non-
volatile memory technologies”. 29th European Solid-State Circuits Conf.,
September 2003, pp37-44.

[10] Mantegazza, D., Ielmini, D., Pirovano, A., Lacaita, A.: ”Anomalous cells
with low reset resistance in phase-change memory arrays”, IEEE Electron
Device Lett., 2007, 28, (10), pp. 865-867.

[11] Lai, S.: ”Current status of the phase change memory and its future”.
IEEE Int. Electron Devices Meeting Technical Digest, December 2003,
pp. 10.1.1-10.1.4.

[12] Mantegazza, D., Ielmini, D., Pirovano, A., et al.: ”Electrical characteri-
zation of anomalous cells in phase change memory arrays”. Int. Electron
Devices Meeting, December 2006, pp. 1-4.

[13] Ielmini, D., Lacaita, A., Mantegazza, D.: ”Recovery and drift dynamics
of resistance and threshold voltages in phase-change memories”, IEEE
Trans. Electron Devices, 2007, 54, (2), pp. 308-315.

[14] Maimon, J.D., Hunt, K.K., Burcin, L., Rodgers, J.: ”Chalcogenide
memory array: characterization and radiation effects”, IEEE Trans. Nucl.
Sci., 2003, 50, (6), pp. 1878-1884.

[15] Al-Harbi, S.M., Noor, F., Al-Turjman, F.M.: ”March DSS: A New
Diagnostic March Test for All Memory Simple Static Faults”, IEEE Trans.
on CAD of Integrated Circuits and Systems(2007)1713-1720.

[16] Gurgen Harutyunyan, Samvel K. Shoukourian, Valery A. Vardanian,
Yervant Zorian: ”A New Method for March Test Algorithm Generation
and Its Application for Fault Detection in RAMs”, IEEE Trans. on CAD
of Integrated Circuits and Systems 31(6): 941-949 (2012).

363

